

MTC Arterial Operations Committee

January 12, 2010

Presented by:
Brian Sowers
Kimley-Horn and Associates, Inc.
925-398-4840
brian.sowers@kimley-horn.com

Presentation Outline

- Overview
- Priority Types
- Detection Technologies
- Operation Scenarios
- Controller Settings/Parameters
- LRT Considerations
- Example Projects

Transit Signal Priority (TSP)

- Goal: Provide preferential treatment to transit vehicles while minimizing impacts on vehicular traffic
- Used for both buses and light rail
- Unlike preemption, TSP does not allow reduction or termination of pedestrian clearance times
- Two Types:
 - Passive
 - Active

Passive Priority

- Signal coordination to favor the progression of transit vehicles without the use of transit vehicle detection technologies or TSP interactions
- Dwell times at stops are estimated to develop the progression schemes
- Used mostly for one-way progression
- Impacts to vehicle progression primarily in the direction opposite to the transit vehicle progression
- Not very reliable

Active Priority

- Uses transit vehicle detection technologies and priority algorithms to service a transit vehicle
- Typically uses early green or green extension to service a priority call
- Two types:
 - Headway-Based
 - Schedule-Based

Headway-based TSP

- TSP requests granted based on pre-determined time interval, e.g. every 10 minutes
 - Systems can restrict more than one call within the interval, so TSP preference may not be granted
- TSP emitter is always on
- Simple and cost effective to implement
- Examples: San Pablo Avenue, E. 14th/International/ Broadway, Telegraph Avenue, VTA Line #522

Schedule-based TSP

- TSP is requested and granted only when a transit vehicle is behind schedule
- TSP turned on only when needed
- Requires an AVL and scheduling system to determine whether bus is behind schedule

TSP Detection Technologies

- Optical (such as Opticom)
- GPS
- Loop detectors
- Radio

Signal Interconnect for cascading calls

Cascading Priority Calls

- Sends a TSP call to multiple traffic controllers using interconnect cable
- Upstream traffic controller(s) receives TSP call, processes it, and forwards the TSP to the downstream traffic controller(s)
- Next downstream traffic controller does the same (process and send)
- Provides more time for the traffic controllers to react and service the transit phase

TSP Scenarios

- Do Nothing
- Extended Green
- Early Green
- Early Green lag left turns
- Transition and Recovery

Do Nothing Scenario

 Priority call is placed prior to or during the priority phase, but can clear during the normal split time

Extended Green Scenario

 Priority call is placed prior to or during the priority phase, but requires extended green to clear the intersection

Early Green Scenario

 Priority call is placed when priority phase is not active and therefore the priority phase receives an early

green

Early Green Scenario – Lag Left Turns

 Same as early green but the left turns in the priority direction, which normally lead, are lagged during a priority cycle to bring the through phase on early.

Transition and Recovery from TSP

- Varies from one controller software to another
- Early green TSP needs no recovery
 - Controller is back in "sync" at the end of that coordinated green
- Extended green TSP can recover in one of two ways:
 - Shorten the following non-transit phase, or
 - Give the following non-transit phase the full split and shorten the next cycle's transit phase

Controller Settings

- Can be used in either free or coordinated mode
- Maximum extension or minimum reduction
 - Designate specific priority minimum splits or reduction in split time
 - Maximum reduction of splits as a % of cycle length (Bi Tran and Caltrans)
- Frequency of granting (time or cycles)
 - Weigh expected benefit vs. potential for increased delay

Controller Settings, cont.

- Arrival time
 - Calculate based on where call is placed and transit vehicle travel time (include dwell time)
- Alternative phase sequence during priority cycle (left turns on main street)
- Phase omit (some controllers)
 - Not preferred and consider for very minor movements only
- Time-out setting
 - Controlled by splits or set by travel time

TSP Analysis

- Splits Early and Extend Times
 - VISSIM or other simulation software
 - With virtual controller software, can accurately evaluate impact on traffic operations.
 - Higher cost to develop.
 - Synchro or other timing software
 - Model "worst case" maximum early green or extended green to determine how much time can be taken from each phase
 - Lower cost to develop
- Travel time and arrival data
 - Controller/system data collection
 - Manual observations at intersections
 - Ride transit vehicles

Special LRT Priority Considerations

- Minimizing LRT delay and stops is critical for system schedules
- Reduction in vehicular splits usually set much higher to minimize LRT delay
- Enabling left turn sequence change can significantly improve operations
- Since early and extended greens are a high % of the cycle, offsets during coordination need to be adjusted
- May require slightly higher coordination cycle and splits to enable phases to "recover" after priority call

San Jose LRT Corridors

- 2070 controllers with D4 software installed, with predictive priority operation
- Calls are cascaded and continually updated as a train arrives at an intersection
- Where coordination did not work effectively with old controllers, the new controllers allowed for coordination with TSP
- Timing updated along LRT corridors including Capitol Avenue, First Street, Second Street, Tasman Drive, San Carlos Street.

San Jose LRT Corridors, cont.

- VISSIM software used for initial operations review,
 Synchro used for coordination timing and TSP
- Signal coordination implemented in various sections during various times of the day
- Some sections do not warrant coordination, but free operations optimized
- Provided cross coordination on some key roadways

LRT Corridors Performance Measures

	Time	Savings (%)			
LRT Corridors	Time Period	Travel Time	Average Delay	Average Stops	
Capitol Avenue	AM	-14%	-27%	-22%	
(Hostetter Road to Wilbur Avenue)	PM	-4%	-2%	-1%	
McKee Road	AM	-10%	-23%	-19%	
(Julian Street/28 th Street to Jose Figueres Avenue)	PM	-7%	-15%	-29%	
Taylor Street (1st Street to 7th Street)	PM	-58%	-82%	-75%	
2nd Street (Julian Street to Bood Street)	AM	-5%	-11%	-13%	
2 nd Street (Julian Street to Reed Street)	PM	-12%	-33%	-25%	
1 st Street (San Carlos Street to Tasman Drive)	AM	-18%	-32%	-49%	

VTA Rapid 522

- 27-mile long corridor, 6 municipalities
- 8-minute headways
- El Camino Real from Palo Alto Transit Center to Race St.
 - Primarily Caltrans controlled
 - Loop based detection technology
 - 2 queue jump locations
 - 18.4% reduction in travel time
- The Alameda, Santa Clara Street, Alum Rock from Race Street to Capitol Avenue
 - City of San Jose and Caltrans controlled
 - GPS based detection technology
 - Analysis completed in Synchro (splits by Time-of-day)
 - Calls cascaded between signals in San Jose
 - 23.0% reduction in travel time

Note: Study results and map provided by VTA

Montague Expy./N. First St. LRT

- Study funded by TETAP
- Operation changed to low priority (TSP) from high priority operation
- Ability to coordinate on Montague Expressway in the AM and PM peak periods
- Significant fine-tuning efforts to balance vehicular operations with LRT delay

Montague /N. First Study Results

- Montague Expressway Results
 - Average vehicular delay on Montague reduced 23% to 66%
 - Observed maximum vehicle queuing reduced on all approaches

Estimated total yearly fuel savings of ~100,000 gallons during AM and PM

period

Peak	Average Delay (seconds per vehicle)				% Difference		Total Yearly Delay Savings	Total Yearly Delay Savings	
Period	Bef	ore	Af	ter	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(vehicle-hour)	(person-hour)	
	WB	EB	WB	EB	WB	EB	WB/EB	WB/EB	
AM	112	43	44	33	-60.7%	-23.3%	18,655	20,520	
PM	89	50	31	17	-65.2%	-66.0%	27,390	30,130	

- **Light Rail Transit Results**
 - 47% of the trains did not stop
 - Average delay increased to ~28 seconds, from under 5 seconds

Peak Period			ge Delay s per trair	1)	Occupancy (person per hour)		Total Yearly Delay Increase	
	Before		After		NB	SB	(person-hour)	
	NB	SB	NB	SB	IND	3D	NB/SB	
AM	3.9	3.4	28.6	27.5	190	185	1,270	
PM	1.0	3.1	22.4	32.7	220	295	1,865	

San Pablo Avenue BRT

- 14-mile long corridor
- Includes 7 cities in 2 counties
- Used 10% of cycle for priority
- Optical detection technology
- 17% reduction in travel time
- 77% increase in ridership

Questions?

